Аллотропные модификации углерода

Алмаз, графит, фуллерен

Введение image
Углерод (от латинского: carbo «уголь») представляет собой химический элемент с символом С и атомным номером 6. Для образования ковалентных химических связей, доступны четыре электрона. Вещество является неметаллическим и четырехвалентным. Три изотопа углерода встречаются естественным образом, 12С и 13С стабильны, а 14С – радиоактивный изотоп, затухающий с периодом полураспада около 5730 лет. 1) Углерод – один из немногих элементов, известных с древности. Углерод – это 15-й наиболее распространенный элемент в земной коре, и четвертый наиболее распространенный элемент во Вселенной по массе после водорода, гелия и кислорода. Обилие углерода, уникальное разнообразие его органических соединений и его необычная способность образовывать полимеры при температурах, обычно встречающихся на Земле, позволяют этому элементу служить общим элементом для всех известных форм жизни. Это второй наиболее распространенный элемент в человеческом теле по массе (около 18,5%) после кислорода. 2) Атомы углерода могут связываться по-разному, называясь при этом аллотропами углерода. Наиболее известными аллотропами являются графит, алмаз и аморфный углерод.

Понятия «Аллотропия»

Аллотропия имеет древнегреческие корни: αλλος — другой, τροπος — свойство. Аллотропия — существование двух и более простых веществ одного и того же химического элемента. Понятие аллотропии введено в науку Й. Берцелиусом в 1841 году для обозначения разных форм существования элементов. Явление аллотропии подразумевает возможность создания из одного и того же элемента определенного количества различных веществ. Например, кислород и озон в своем составе содержат только лишь оксиген. Вопрос о том, как это вообще возможно, на протяжении длительного периода времени интересовал многих людей. На сегодняшний момент ученые легко могут объяснить все особенности этого процесса. Далеко не все элементы способны образовывать несколько разных простых веществ. Такая способность напрямую зависит от структуры молекул. Чаще всего подобное явление наблюдается у элементов, которые имеют переменные окислительные степени. Это касается таких групп, как: неметаллы; полуметаллы; благородные газы; галогены. 


Алмаз

Согласно современным теоретическим представлениям, тверже алмаза ничего в мире быть не может — такова у него кристаллическая решетка. Можно сказать, что алмаз — самый крепкий минерал в мире. Плавится алмаз при высоких температурах, от 3700 до 4 тыс. градусов. Но еще раньше, при 850 градусах, он начинает гореть, а без доступа воздуха при достижении половины от температуры плавления превращается в графит. Как образуется в природе Выделяют 3 группы магматических теорий: 1. Алмазы образуются в верхних слоях земной коры, когда углеводороды из вмещающих пород попадают в затвердевающую магму 2. Алмазы формируются в ультраосновных породах. Расплавленная магма дезинтегрирует алмазный пласт, высвобождает отдельные единицы и выносит наверх с магматическим потоком 3. Алмазы в основном образуются в недрах ультраосновной магмы, а также в процессе ее выхода на поверхность Получение В 1961 году появились первые публикации фирмы «Dupont» о реализации идей получения алмаза путём прямого фазового перехода из графита. Синтез производился с использованием энергии взрыва. В настоящее время существует крупное промышленное производство синтетических алмазов, которое обеспечивает потребности в абразивных материалах. Для синтеза используется несколько способов. Один из них состоит в подготовке высокоуглеродистого сплава никель-марганец и его охлаждении под давлением в формах из твердого сплава (типа ВК). Выкристаллизовавшиеся мелкие алмазы отделяют после растворения металлической матрицы в смеси кислот. Современные способы получения алмазов используют газовую среду состоящую из 95 % водорода и 5 % углесодержащего газа (пропана, ацетилена), а также высокочастотную плазму, сконцентрированную на подложке, где образуется сам алмаз. Температура газа от 700—850 градусов при давлении в тридцать раз меньше атмосферного. В зависимости от технологии синтеза, скорость роста алмазов от 7 микрон/час до 3 микрон/минута на подложке. Гидротермальный способ наращивания и роста алмазов использует смесь азотной, серной и уксусной кислот, а также графита при оптимальной температуре 50 градусов и атмосферном давлении. Применение алмазов Алмазы применяются для изготовления драгоценных камней, ножей, сверл, резцов, режущих, точильных дисков, часовой и ядерной промышленности, микроэлектронике. Огранка Форма огранки бриллианта зависит от формы исходного кристалла алмаза. Чтобы получить бриллиант максимальной стоимости, огранщики стараются свести к минимуму потери алмаза при обработке. В зависимости от формы кристалла алмаза, при его обработке теряется от 55 % до 70 % веса. Окраска Каждый цветной бриллиант — совершенно уникальное произведение природы, искусно открытое миру мастерством ювелира-огранщика. Окраску таких бриллиантов называют фантазийной — ведь только в самых смелых фантазиях можно представить себе всё многообразие цвета, которое дарит природа королям драгоценных камней: белый, серый, желтый, синий и даже черный (карбонадо). Примеры цветных бриллиантов: Дрезденский Зеленый Бриллиант — 41 метрический карат Желтый алмаз Тиффани — 128,5 карата Портер Родс (голубой) — 56,6 карата [10]. Структура Один атом углерода окружен еще четырьмя атомами в виде четырехгранного треугольника или пирамиды. Каждый атом находится на одинаковом расстоянии друг от друга. Связь у атомов очень крепкая, именно поэтому алмаз является таким твердым и прочным. Еще одно свойство алмаза - это то, что он может проводить свет, в отличие от графита. Физические свойства: Алмаз – прозрачные кристаллы, очень твердые. Твердость объясняется строением его кристаллической решетки. Химические свойства: При обычной температуре углерод малоактивен. Он может быть, как восстановителем, так и окислителем. Как восстановитель: Горит на воздухе.

Графит

Графи́т — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально-скаленоэдрический). Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода. Как образуется в природе Графит чаще всего образуется от воздействия большой температуры и давления в осадочных породах — в каменном угле и битумах. Этот процесс называют метаморфизмом. В некоторых случаях материал образовывается в процессе кристаллизации. Как правило, возникает из магмы, которая богата углеродом. Иногда образуется из известняка, который был захвачен магмой. Получение Искусственный графит получают разным способами: Ачесоновский графит: получают нагреванием смеси кокса и пека до 2800° C. Рекристаллизированный графит: получают термомеханической обработкой смеси, содержащей кокс, пек, природный графит и карбидообразующие элементы. Пирографит: пиролизм из газообразных углеводородов при температуре 1400-3000°C вакууме с последующим нагреванием образовавшегося прироуглерода до температуры 2500-3000°C при давлении 50 МПа( в электрической промышленности применяется наименование «электрографит»). Доменный графит: выделяется при медленном охлаждении больших масс чугуна. Применение Графит используется в карандашной промышленности для изготовления стержней карандаша в смеси с глиной для уменьшения его мягкости. Используют в качестве смазки при особо высоких или низких температурах. Из графита изготавливают тигли для заливки металлов. Из графита изготавливают высококачественные электроды, т.к. он является хорошим проводником электрического тока. Физические свойства: Графит-мягкое черное вещество из легко слоящихся кристалликов, - проводит электрический ток, - графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. - температура плавления при повышенном давлении равна 3527° C. Химические свойства: Со многими веществами (щелочными металлами, солями) образует соединения включения. Реагирует при высокой температуре с воздухом, сгорая до углекислого газа.

Фуллерен

Фуллерен, бакибол, или букибол — молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёх координированных атомов углерода. Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства. В соединении с другими веществами они позволяют получить материалы с принципиально новыми свойствами. Как образуется в природе На Земле фуллерены образуются при горении природного газа и в разряде молнии. Летом 2011 года были опубликованы результаты исследований проб воздуха над Средиземным морем: во всех 43 образцах воздуха, взятых от Барселоны до Стамбула, были обнаружены фуллерены. Получение Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. Используется как электролитический нагрев графитового электрода, так и лазерное облучение поверхности графита. Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц , величина тока от 100 до 200 А, напряжение 10-20 В. Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием, давление 100 Тор. Скорость испарения графита в этой установке может достигать 10г/В. При этом поверхность медного кожуха, охлаждаемого водой, покрывается продуктом испарения графита, т.е. графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, то получается темно-бурая жидкость. При выпаривании ее во вращающемся испарителе получается мелкодисперсный порошок, вес его составляет не более 10% от веса исходной графитовой сажи., в нем содержится до 10% фуллеренов С60 (90%) и С70 (10%).Описанный дуговой метод получения фуллеренов получил название «фуллереновая дуга». Применение Фуллерены планируют использовать в качестве основы для производства. В настоящее время в научной литературе обсуждаются вопросы использования фуллеренов для создания фотоприемников и оптоэлектронных устройств, катализаторов роста, алмазных и алмазоподобных пленок, сверхпроводящих материалов, в качестве красителей для копировальных машин, в медицине и фармакологии. Фуллерены применяются для синтеза металлов и сплавов с новыми свойствами. Структура Атом связь Фуллерен является новой аллотропной формой углерода. Молекулы фуллерена состоят из 60,70 атомов, образующих сферу. Кристаллические фуллерены представляют собой полупроводники. Разнообразие физико-химических и структурных свойств соединений на основе фуллеренов позволяет говорить о химии фуллеренов как о новом перспективном направлении органической химии. Атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов фуллерен (C60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч. Физические свойства: Фуллерен-мягкий, скользкий, бесцветный Химические свойства: Восстановление, нуклеофильное присоединение, цикло присоединение, региохимическое множественное присоединение, галогенирование, модифицирование фуллеренов, кластерами гидрирование, присоединение радикалов, образование комплексов, переходных металлов окисление и реакции с электрофильными реагентами.

ДАННЫЙ САЙТ БЫЛ СОЗДАН, ИСПОЛЬЗУЯ